

MEDNARODNA PODIPLOMSKA ŠOLA JOŽEFA STEFANA

INFORMATION AND COMMUNICATION TECHNOLOGIES PhD study programme

Data Mining and Knowledge Discovery

Petra Kralj Novak December 18, 2019

http://kt.ijs.si/petra_kralj/dmkd3.html

So far ...

- Nov. 11. 2019
 - Basic classification
 - Orange hands on data visualization and classification
- Dec. 11 2019
 - Fitting and overfitting
 - Data leakage
 - Decision boundary
 - Evaluation methods
 - Classification evaluation metrics: confusion matrix, TP, FP, TN, FN, accuracy, precision, recall, F1, ROC
 - Imbalanced data and unequal misclassification costs
 - Probabilistic classification
 - Naïve Bayes classifier

Assignment 1: Home reading

Read: Friedman, J., Hastie, T., & Tibshirani, R. (2001). *The elements of statistical learning, Second edition*. New York: Springer series in statistics. <u>https://web.stanford.edu/~hastie/Papers/ESLII.pdf</u>

Pages 9 – 18:

- 2.2 Variable Types and Terminology 9
- - 2.3.1 Linear Models and Least Squares 11

 - 2.3.3 From Least Squares to Nearest Neighbors . . . 16

Assignment 2: Decision boundary

- What is a decision boundary like for KNN?
 - K=1
 - K=3
 - K=10

You can do it by hand, in Orange or in SciKit.

What is a decision boundary like for KNN

K=1

The large circles are the training set, the small ones are the test set – colored by the real labels. The background colors represent the decision boundary. The source code for this is available at

Assignment 3: Confusion matrix

Predicted

	Titanic	Car
Number of examples		
Number of classes		
Number of examples in each class		
Number of examples classified in individual classes		
Number of misclassified examples		
Classification accuracy		

Assignment 4: F1

• Express F1 in terms of TP, FP, TN, FN

$$F_1 = \ 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}} \ = rac{2 ext{TP}}{2 ext{TP} + ext{FP} + ext{FN}}$$

		Predicted class		Total
		+	_	instances
Actual class	+	TP	FN	Р
	_	FP	TN	Ν

Exercise: Naïve Bayes Classifier

Color	Size	Time	Caught
black	large	day	YES
white	small	night	YES
black	small	day	YES
red	large	night	NO
black	large	night	NO
white	large	night	NO

$$P(c_i | a_1 = v_1, a_2 = v_2, ..., a_j = v_j) \propto P(c_i) \times \prod_{j=1}^n P(a_j = v_j | class = c_i)$$

- Does the spider catch a white ant during the night?
- Does the spider catch the big black ant at daytime?

Exercise: Naïve Bayes Classifier

Does the spider catch a white ant during the night?

Color	\mathbf{Size}	Time	Caught
black	large	day	YES
white	small	night	YES
black	small	day	YES
red	large	night	NO
black	large	night	NO
white	large	night	NO

$$P(c_i | a_1 = v_1, a_2 = v_2, ..., a_j = v_j) \propto P(c_i) \times \prod_{j=1}^n P(a_j = v_j | class = c_i)$$

$$v_1 = "Color = white"$$

$$v_2 = "Time = night"$$

$$c_1 = YES$$

$$c_2 = NO$$

 $P(C_{1}|v_{1}, v_{2}) = P(YES|C = w, T = n) = P(YES) \cdot P(C = w|YES) \cdot P(T = n|YES) = P(NO|C = w, T = n) = P(NO) \cdot P(C = w|NO) \cdot P(T = n|NO) = \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{18} = \frac{1}{6}$

Exercise: Naïve Bayes Classifier

Does the spider catch the big black ant at daytime?

Color	Size	Time	Caught
black	large	day	YES
white	small	night	YES
black	small	day	YES
red	large	night	NO
black	large	night	NO
white	large	night	NO

$$P(c_i | a_1 = v_1, a_2 = v_2, ..., a_j = v_j) \propto P(c_i) \times \prod_{j=1}^n P(a_j = v_j | class = c_i)$$

Ant 2: Color = black, Size = large, Time = day $v_1 = "Color = black" = "C = b"$ $v_2 = "Size = large" = "S = l"$ $v_3 = "Time = day" = "T = d"$ $c_1 = YES$ $c_2 = NO$

 \boldsymbol{n}

$$P(C_1|v_1, v_2, v_3) = = P(YES|C = b, S = l, T = d) = P(YES) \cdot P(C = b|YES) \cdot P(S = l|YES) \cdot P(T = d|YES) = \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{2}{3} = \frac{4}{54} = \frac{2}{27}$$

$$P(C_2|v_1, v_2, v_3) =$$

$$= P(\text{NO}|C = b, S = l, T = d)$$

$$= P(\text{NO}) \cdot P(C = b|\text{NO}) \cdot P(S = l|\text{NO}) \cdot P(T = d|\text{NO})$$

$$= \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{3}{3} \cdot 0$$

$$= 0$$

Probability Estimation

A decision tree of depth 5

Estimating probability

- In machine learning we often estimate probabilities from small samples of data and their subsets:
 - In the 5th depth of a decision tree we have just about 1/32 of all training examples.
- Estimate the probability based on the amount of evidence and of the prior probability
 - Coin flip: prior probability 50% 50%
 - One coin flip does not make us believe that the probability of heads is 100%
 - More evidence can make us suspect that the coin is biased

Estimating probability

Relative frequency

- P(c) = n(c) /N
- A disadvantage of using relative frequencies for probability estimation arises with small sample sizes, especially if the probabilities are either very close to zero, or very close to one.
- In our spider example:

```
P(Time=day|caught=NO) =
= 0/3 = 0
```

n(c) ... number of times an event occurred

- N ... total number of events
- k ... number of possible outcomes

Relative frequency vs. Laplace estimate

Relative frequency

- P(c) = n(c) /N
- A disadvantage of using relative frequencies for probability estimation arises with small sample sizes, especially if the probabilities are either very close to zero, or very close to one.
- In our spider example:

```
P(Time=day|caught=NO) =
= 0/3 = 0
```

- n(c) ... number of times an event occurred
- N ... total number of events
- k ... number of possible outcomes

Laplace estimate

- Assumes uniform prior distribution over the probabilities for each possible event
- P(c) = (n(c) + 1) / (N + k)
- In our spider example: P(Time=day|caught=NO) = (0+1)/(3+2) = 1/5
- With lots of evidence it approximates relative frequency
- If there were 300 cases when the spider didn't catch ants at night: P(Time=day|caught=NO) = (0+1)/(300+2) = 1/302 = 0.003
- With Laplace estimate probabilities can never be 0.

Laplace estimate (Additive smoothing)

Laplace estimate (Additive smoothing)

Exercise

- Estimate the probabilities of C1 and C2 in the table below by relative frequency and Laplace estimate.
- P(c) = (n(c) + 1) / (N + k)

n(c) ... number of times an event occurredN ... total number of eventsk ... number of possible outcomes

Number	of events	Relative f	requency	Laplace	estimate
Class C1	Class C2	P(C1)	P(C2)	P(C1)	P(C2)
0	2				
12	88				
12	988				
120	880				

Exercise

• Estimate the probabilities of C1 and C2 in the table below by relative frequency and Laplace estimate.

Number	of events	ents Relative frequency		Laplace	estimate
Class C1	Class C2	P(C1)	P(C2)	P(C1)	P(C2)
0	2	0	1	0.25	0.75
12	88	0.12	0.88	0.127451	0.872549
12	988	0.012	0.988	0.012974	0.987026
120	880	0.12	0.88	0.120758	0.879242

Data mining techniques

...

...

Numeric prediction

Regression

Example

 data about 80 people: Age and Height

Age	Height
3	1.03
5	1.19
6	1.26
9	1.39
15	1.69
19	1.67
22	1.86
25	1.85
41	1.59
48	1.60
54	1.90
71	1.82

Test set

Age	Height
2	0.85
10	1.4
35	1.7
70	1.6

Baseline numeric predictor

• Average of the target variable

Baseline predictor: prediction Average of the target variable is 1.63

Age	Height	Baseline
2	0.85	
10	1.4	
35	1.7	
70	1.6	

Linear Regression Model

Height = 0.0056 * Age + 1.4181

Linear Regression: prediction

Height = 0.0056 * Age + 1.4181

		Linear
Age	Height	regression
2	0.85	
10	1.4	
35	1.7	
70	1.6	

Regression tree

Regression tree: prediction

A		Regression
Age	Height	tree
2	0.85	
10	1.4	
35	1.7	
70	1.6	

Model tree

Model tree: prediction

Age	Height	Model tree
2	0.85	
10	1.4	
35	1.7	
70	1.6	

KNN – K nearest neighbors

- Looks at K closest examples (by non-target attributes) and predicts the average of their target variable
- In this example, K=3

Age	Height
1	0.90
1	0.99
2	1.01
3	1.03
3	1.07
5	1.19
5	1.17

Age	Height	kNN
2	0.85	
10	1.4	
35	1.7	
70	1.6	

Age	Height
8	1.36
8	1.33
9	1.45
9	1.39
11	1.49
12	1.66
12	1.52
13	1.59
14	1.58

Age	Height	kNN
2	0.85	
10	1.4	
35	1.7	
70	1.6	

Age	Height
30	1.57
30	1.88
31	1.71
34	1.55
37	1.65
37	1.80
38	1.60
39	1.69
39	1.80

Age	Height	kNN
2	0.85	
10	1.4	
35	1.7	
70	1.6	

Age	Height
67	1.56
67	1.87
69	1.67
69	1.86
71	1.74
71	1.82
72	1.70
76	1.88

Age	Height	kNN
2	0.85	
10	1.4	
35	1.7	
70	1.6	

Which predictor is the best?

Age	Height	Baseline	Linear regression	Regressi on tree	Model tree	kNN
2	0.85	1.63	1.43	1.39	1.20	1.00
10	1.4	1.63	1.47	1.46	1.47	1.44
35	1.7	1.63	1.61	1.71	1.71	1.67
70	1.6	1.63	1.81	1.71	1.75	1.77

MAE: Mean absolute error

The average difference between the predicted and the actual values. The units are the same as the unites in the target variable.

MSE: Mean squared error

$$MSE = \frac{1}{n} \Sigma \left(\underbrace{y - \widehat{y}}_{n} \right)^{2}$$

The square of the difference between actual and predicted

Mean squared error measures the average squared difference between the estimated values and the actual value. Weights large errors more heavily than small ones.

The units of the errors are squared.

RMSE: Root mean square error

$RMSE = \sqrt{MSE}$

Taking the square root of MSE yields the root-mean-square error (RMSE), which has the same units as the quantity being estimated.

Correlation coefficient

• Pearson correlation coefficient is a statistical formula that measures the strength between variables and relationships.

Similar to confusion matrix in the classification case. No unit.

Numeric prediction in Orange

Metrics

- MSE mean squared error
- RMSE root mean squared error
- MAE mean absolute error
- R² correlation coefficient

0.055			R2
	0.236	0.175	-0.005
0.033	0.181	0.142	0.405
0.032	0.179	0.128	0.423
0.026	0.161	0.118	0.533
0.011	0.107	0.086	0.794
0.010	0.100	0.073	0.817
0.004	0.066	0.057	0.922
0.003	0.057	0.048	0.940
	0.032 0.026 0.011 0.010 0.004	0.032 0.179 0.026 0.161 0.011 0.107 0.010 0.100 0.004 0.066	0.032 0.179 0.128 0.026 0.161 0.118 0.011 0.107 0.086 0.010 0.100 0.073 0.004 0.066 0.057

Numeric prediction	Classification			
Data: attribute-value description				
Target variable:	Target variable:			
Continuous	Categorical (nominal)			
Evaluation: cross validation, separate test set,				
Error:	Error:			
MSE, MAE, RMSE,	1-accuracy			
Algorithms:	Algorithms:			
Linear regression, regression trees,	Decision trees, Naïve Bayes,			
Baseline predictor:	Baseline predictor:			
Mean of the target variable	Majority class			

Performance measures for numeric prediction

Performance measure	Formula
mean-squared error	$\frac{\left(p_1-a_1\right)^2+\ldots+\left(p_n-a_n\right)^2}{n}$
root mean-squared error	$\sqrt{\frac{(p_1-a_1)^2+\ldots+(p_n-a_n)^2}{n}}$
mean absolute error	$\frac{ p_1-a_1 +\ldots+ p_n-a_n }{n}$
relative squared error	$\frac{\left(p_1-a_1\right)^2+\ldots+\left(p_n-a_n\right)^2}{\left(a_1-\overline{a}\right)^2+\ldots+\left(a_n-\overline{a}\right)^2}, \text{ where } \overline{a}=\frac{1}{n}\sum_i a_i$
root relative squared error	$\sqrt{\frac{(p_1 - a_1)^2 + \ldots + (p_n - a_n)^2}{(a_1 - \overline{a})^2 + \ldots + (a_n - \overline{a})^2}}$
relative absolute error	$\frac{ \boldsymbol{p}_1 - \boldsymbol{a}_1 + \ldots + \boldsymbol{p}_n - \boldsymbol{a}_n }{ \boldsymbol{a}_1 - \overline{\boldsymbol{a}} + \ldots + \boldsymbol{a}_n - \overline{\boldsymbol{a}} }$
correlation coefficient	$\frac{S_{PA}}{\sqrt{S_PS_A}}$, where $S_{PA} = \frac{\sum_i (p_i - \overline{p})(a_i - \overline{a})}{n-1}$,
	$S_p = \frac{\sum_i (p_i - \overline{p})^2}{n-1}$, and $S_A = \frac{\sum_i (a_i - \overline{a})^2}{n-1}$

* p are predicted values and a are actual values.

Witten, Ian H., Eibe Frank, and Mark A. Hall. "Practical machine learning tools and techniques." *Morgan Kaufmann* (2005): 578. pg. 178

Relative squared error

"The error is made relative to what it would have been if a simple predictor had been used. The simple predictor in question is just the average of the actual values from the **training** data. Thus relative squared error takes the total squared error and normalizes it by dividing by the total squared error of the default predictor."

Exercise: RRSE

- Use SciKit (or Orange) to compute RRSE of regression models
- RRSE = root relative squared error
 - Nominator: sum of squared differences between the actual and the expected values
 - Denominator: sum of squared errors (the sum of the squared differences between each observation and its group's mean)

$$RRSE = \sqrt{\frac{\sum_{i=1}^{n} (p_i - a_i)^2}{\sum_{i=1}^{n} (\overline{a} - a_i)^2}}$$

p – predicted, a – actual, ā – the mean of the actual

• RRSE: Ratio between the error of the model and the error of the naïve model (predicting the average)

Regression in scikit ... 4_regression.py

```
import pandas as pd
from sklearn import dummy
from sklearn import linear model
from sklearn import tree
from sklearn.neighbors import KNeighborsRegressor
from sklearn.model selection import train test split
from sklearn import metrics
print("
                                                                                        ")
print ("Regression models, train-test validation on regressionAgeHeight.csv. ")
print(""" Load the data """)
csvFileName = r"./Datasets/regressionAgeHeight.csv"
df = pd.read csv(csvFileName)
print(df.head())
print("data shape: ", df.shape)
feature cols = ['Age']
target var = 'Height'
X = df[feature cols].values
y = df[target var].values
""" Train-test split """
X train, X test, y train, y test = train test split(X, y, test size=0.1, random state=42)
```

Regression in scikit ... 4_regression.py

```
""" Initialize the learners """
dummy = dummy.DummyRegressor()
regr = linear_model.LinearRegression()
reg_tree = tree.DecisionTreeRegressor(min_samples_leaf=8)
knn = KNeighborsRegressor(n neighbors=2)
```

```
learner = reg tree
```

```
"""" Train and apply """
learner.fit(X_train, y_train)
y_pred = learner.predict(X_test)
```

```
print ("\n Actual Predicted")
for i in range(len(y_test)):
    print("{0:6.2f} {1:8.2f}".format(y_test[i], y_pred[i]))
```

```
print("Performance:")
print("MAE \t{0:5.2f}".format( metrics.mean_absolute_error(y_test,y_pred)))
print("MSE \t{0:5.2f}".format( metrics.mean_squared_error(y_test,y_pred)))
print("R2 \t{0:5.2f}".format( metrics.r2_score(y_test,y_pred)))
```