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So far …

• Nov. 11. 2019
• Basic classification
• Orange hands on data visualization and classification

• Dec. 11 2019
• Fitting and overfitting
• Data leakage
• Decision boundary
• Evaluation methods
• Classification evaluation metrics: confusion matrix, TP, FP, TN, FN, accuracy, precision, 

recall, F1, ROC
• Imbalanced data and unequal misclassification costs
• Probabilistic classification
• Naïve Bayes classifier
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Assignment 1: Home reading

Read: Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning, Second 
edition. New York: Springer series in statistics. https://web.stanford.edu/~hastie/Papers/ESLII.pdf

Pages 9 – 18:
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 9 

2.2 Variable Types and Terminology . . . . . . . . . . . . . . 9 

2.3 Two Simple Approaches to Prediction: Least Squares and Nearest Neighbors . . . . . . . . . . . 11 

2.3.1 Linear Models and Least Squares . . . . . . . . 11 

2.3.2 Nearest-Neighbor Methods . . . . . . . . . . . . 14 

2.3.3 From Least Squares to Nearest Neighbors . . . . 16
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Assignment 2: Decision boundary

• What is a decision boundary like for KNN?
• K=1 

• K=3

• K=10

You can do it by hand, in Orange or in SciKit.



What is a decision boundary like for KNN

K=1
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K=3 K=10

The large circles are the training set, the small ones are the test set – colored by the real labels. The 
background colors represent the decision boundary.
The source code for this is available at 



Assignment 3: Confusion matrix

Titanic
Car

Titanic Car

Number of examples

Number of classes

Number of examples in each class

Number of examples classified in individual classes

Number of misclassified examples

Classification accuracy



Assignment 4: F1

• Express F1 in terms of TP, FP, TN, FN



Exercise: Naïve Bayes Classifier

• Does the spider catch a white ant during the night?

• Does the spider catch the big black ant at daytime?
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Exercise: Naïve Bayes Classifier
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Does the spider catch a white ant during the night?



Exercise: Naïve Bayes Classifier
Does the spider catch the big black ant at daytime?



Probability Estimation



A decision tree of depth 5

How many examples are on average in each leaf at level 5?



Estimating probability

• In machine learning we often estimate probabilities from small samples of data 
and their subsets:
• In the 5th depth of a decision tree we have just about 1/32 of all training examples.

• Estimate the probability based on the amount of evidence and of the prior 
probability
• Coin flip: prior probability 50% - 50%

• One coin flip does not make us believe that the probability of heads is 100%

• More evidence can make us suspect that the coin is biased



Estimating probability

Relative frequency
• P(c) = n(c) /N 

• A disadvantage of using relative frequencies for 
probability estimation arises with small sample 
sizes, especially if the probabilities are either very 
close to zero, or very close to one.

• In our spider example:

P(Time=day|caught=NO) = 

= 0/3 = 0
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n(c) … number of times an event occurred
N … total number of events 
k … number of possible outcomes 



Relative frequency vs. Laplace estimate

Relative frequency
• P(c) = n(c) /N 

• A disadvantage of using relative frequencies for 
probability estimation arises with small sample 
sizes, especially if the probabilities are either very 
close to zero, or very close to one.

• In our spider example:

P(Time=day|caught=NO) = 

= 0/3 = 0

Laplace estimate
• Assumes uniform prior distribution over the 

probabilities for each possible event

• P(c) = (n(c) + 1) / (N + k)

• In our spider example: P(Time=day|caught=NO) = 
(0+1)/(3+2) = 1/5

• With lots of evidence it approximates relative 
frequency

• If there were 300 cases when the spider didn’t 
catch ants at night: P(Time=day|caught=NO) = 
(0+1)/(300+2) = 1/302 = 0.003

• With Laplace estimate probabilities can never be 0.
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n(c) … number of times an event occurred
N … total number of events 
k … number of possible outcomes 



Laplace estimate (Additive smoothing)
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Laplace estimate (Additive smoothing)
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Exercise

• Estimate the probabilities of C1 and C2 in the table below by relative frequency 
and Laplace estimate.

• P(c) = (n(c) + 1) / (N + k)

Number of events Relative frequency Laplace estimate

Class C1 Class C2 P(C1) P(C2) P(C1) P(C2)

0 2

12 88

12 988

120 880

n(c) … number of times an event occurred
N … total number of events
k … number of possible outcomes



Exercise

• Estimate the probabilities of C1 and C2 in the table below by relative frequency 
and Laplace estimate.

Number of events Relative frequency Laplace estimate

Class C1 Class C2 P(C1) P(C2) P(C1) P(C2)

0 2 0 1 0.25 0.75

12 88 0.12 0.88 0.127451 0.872549

12 988 0.012 0.988 0.012974 0.987026

120 880 0.12 0.88 0.120758 0.879242



Data mining techniques

Predictive induction

Classification

Decision trees

Classification 
rules

Naive Bayes 
classifier

KNN

SVM

ANN

…

Numeric prediction

Linear 
regression

Regression / 
model trees

KNN

SVM

ANN

…

Descriptive induction

Association rules

Apriori

FP-growth

…

Clustering

Hierarchical

K-means

Dbscan

…
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Numeric prediction
Regression
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Example

• data about 80 people: Age and 
Height
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Test set



Baseline numeric predictor

• Average of the target variable
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Baseline predictor: prediction
Average of the target variable is 1.63



Linear Regression Model

Height =    0.0056 * Age + 1.4181
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Linear Regression: prediction

Height =    0.0056 * Age + 1.4181



Regression tree
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Regression tree: prediction



Model tree
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Model tree: prediction
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KNN – K nearest neighbors

• Looks at K closest examples (by non-target attributes) and predicts the average of their 
target variable

• In this example, K=3
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KNN prediction

Age Height

1 0.90

1 0.99

2 1.01

3 1.03

3 1.07

5 1.19

5 1.17
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KNN prediction

Age Height

8 1.36

8 1.33

9 1.45

9 1.39

11 1.49

12 1.66

12 1.52

13 1.59

14 1.58
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KNN prediction

Age Height

30 1.57

30 1.88

31 1.71

34 1.55

37 1.65

37 1.80

38 1.60

39 1.69

39 1.80
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KNN prediction

Age Height

67 1.56

67 1.87

69 1.67

69 1.86

71 1.74

71 1.82

72 1.70

76 1.88



Which predictor is the best?
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Age Height Baseline
Linear 

regression

Regressi

on tree

Model 

tree
kNN

2 0.85 1.63 1.43 1.39 1.20 1.00

10 1.4 1.63 1.47 1.46 1.47 1.44

35 1.7 1.63 1.61 1.71 1.71 1.67

70 1.6 1.63 1.81 1.71 1.75 1.77



MAE: Mean absolute error

The average difference between the 
predicted and the actual values.
The units are the same as the unites in the 
target variable.



MSE: Mean squared error

Mean squared error measures the average 
squared difference between the estimated 
values and the actual value.
Weights large errors more heavily than 
small ones.
The units of the errors are squared.



RMSE: Root mean square error

Taking the square root of MSE yields the 
root-mean-square error (RMSE), which has 
the same units as the quantity being 
estimated.

𝑅𝑀𝑆𝐸 = 𝑀𝑆𝐸



Correlation coefficient

• Pearson correlation coefficient is a statistical formula that measures the strength 
between variables and relationships.

Similar to confusion matrix in the classification case.
No unit.



Numeric prediction in Orange

Models

Metrics

• MSE – mean squared error 

• RMSE – root mean squared error 

• MAE – mean absolute error

• R2 – correlation coefficient
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Numeric prediction Classification

Data: attribute-value description

Target variable:

Continuous

Target variable:

Categorical (nominal)

Evaluation: cross validation, separate test set, …

Error:

MSE, MAE, RMSE, …

Error:

1-accuracy

Algorithms:

Linear regression, regression trees,…

Algorithms:

Decision trees, Naïve Bayes, …

Baseline predictor:

Mean of the target variable

Baseline predictor:

Majority class
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Performance measures for numeric prediction

Witten, Ian H., Eibe Frank, and Mark A. Hall. "Practical machine learning tools and techniques."
Morgan Kaufmann (2005): 578. pg. 178



Relative squared error

“The error is made relative to what it would have been if a simple 
predictor had been used. The simple predictor in question is just the 
average of the actual values from the training data. Thus relative 
squared error takes the total squared error and normalizes it by 
dividing by the total squared error of the default predictor.”

45Witten, Ian H., Eibe Frank, and Mark A. Hall. "Practical machine learning tools and techniques.“  Morgan Kaufmann (2005): 578. pg. 177



Exercise: RRSE

• Use SciKit (or Orange) to compute RRSE of regression models

• RRSE = root relative squared error
• Nominator: sum of squared differences between the actual and the expected values

• Denominator: sum of squared errors (the sum of the squared differences between each 
observation and its group's mean)

p – predicted, a – actual, ā – the mean of the actual

• RRSE: Ratio between the error of the model and the error of the naïve model (predicting the average)



Regression in scikit … 4_regression.py
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import pandas as pd

from sklearn import dummy

from sklearn import linear_model

from sklearn import tree

from sklearn.neighbors import KNeighborsRegressor

from sklearn.model_selection import train_test_split

from sklearn import metrics

print("_______________________________________________________________________________")

print("Regression models, train-test validation on regressionAgeHeight.csv. ")

print("_______________________________________________________________________________")

print(""" Load the data """)

csvFileName = r"./Datasets/regressionAgeHeight.csv"

df = pd.read_csv(csvFileName)

print(df.head())

print("data shape: ", df.shape)

feature_cols = ['Age']

target_var = 'Height'

X = df[feature_cols].values

y = df[target_var].values

""" Train-test split """

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)



Regression in scikit … 4_regression.py
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""" Initialize the learners """

dummy = dummy.DummyRegressor()

regr = linear_model.LinearRegression()

reg_tree = tree.DecisionTreeRegressor(min_samples_leaf=8)

knn = KNeighborsRegressor(n_neighbors=2)

learner = reg_tree

"""" Train and apply """

learner.fit(X_train, y_train)

y_pred = learner.predict(X_test)

print ("\n Actual   Predicted")

for i in range(len(y_test)):

print("{0:6.2f}  {1:8.2f}".format(y_test[i], y_pred[i]))

print("Performance:")

print("MAE  \t{0:5.2f}".format( metrics.mean_absolute_error(y_test,y_pred)))

print("MSE  \t{0:5.2f}".format( metrics.mean_squared_error(y_test,y_pred)))

print("R2   \t{0:5.2f}".format( metrics.r2_score(y_test,y_pred)))


