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So far ...

* Nov. 11. 2019

 Basic classification
e Orange hands on data visualization and classification

* Dec. 11 2019

 Fitting and overfitting
* Data leakage
* Decision boundary
* Evaluation methods

 Classification evaluation metrics: confusion matrix, TP, FP, TN, FN, accuracy, precision,
recall, F1, ROC

* Imbalanced data and unequal misclassification costs
* Probabilistic classification
* Naive Bayes classifier



Assignment 1: Home reading

Read: Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning, Second
edition. New York: Springer series in statistics. https://web.stanford.edu/~hastie/Papers/ESLI|.pdf

Pages 9 — 18:
2.1 Introduction.............. ... ... ..., 9
2.2 Variable Types and Terminology . ............. 9
2.3 Two Simple Approaches to Prediction: Least Squares and Nearest Neighbors . .......... 11
2.3.1 Linear Models and Least Squares......... 11
2.3.2 Nearest-Neighbor Methods . ........... 14

2.3.3 From Least Squares to Nearest Neighbors . ... 16


https://web.stanford.edu/~hastie/Papers/ESLII.pdf

Assignment 2: Decision boundary

* What is a decision boundary like for KNN?
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What is a decision boundary like for KNN

K=1

K=3

K=10

@ Figure
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A=B classification (k = 1), accuracy = 0.97
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A=B classification (k = 3), accuracy = 0.96
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A>=B classification (k = 10), accuracy = 0.96
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The large circles are the training set, the small ones are the test set — colored by the real labels. The
background colors represent the decision boundary.
The source code for this is available at



Assignment 3: Confusion matrix

Titanic Car unacc acc good v-good 2
unacc 1154 54 2 0 1210
no yes 2

acc o4 276 14 0 384

no 1364 126 1490 =
= = good 0 44 2 3 69

= <
3 e e s AL v-good 0 2 0 40 65
)] 1726 475 2201 3 1248 399 38 43 1728

Titanic Car

Number of examples

Number of classes

Number of examples in each class

Number of examples classified in individual classes

Number of misclassified examples

Classification accuracy




Assignment 4: F1

* Express F1 in terms of TP, FP, TN, FN

mo_ 9 precision - recall 2TP
A precision + recall ~ 2TP + FP + FN
Predicted class Total
— — instances
Actual class | + | TP FN P
— | FP TN N




Exercise: Naive Bayes Classifier

Color | Size | Time || Caught
black | large | day YES
white | small | night YES
black | small | day YES

red large | night NO
black | large | night NO
white | large | night NO

P(Cffl a;=Vy, C}'J:VJJ...,GJZV}-) oC P((‘l) X

* Does the spider catch a white ant during the night?
* Does the spider catch the big black ant at daytime?

T
[[ Pla; =v; | class = ¢;)

g=1



Exercise: Naive Bayes Classifier

Does the spider catch a white ant during the night?

T
Color | Size | Time | Caught P(c;| a;=v,, a,=v,,..., a=V;) & P(ci) x 1] Plaj =v; | class = ¢;)
black | large | day YES j=1
white | small | night YES )
black | small | day YES vy = “Color = white”
red large | nmight NO vy = “Time = night”
black | large | night NO
white | large | night NO cg=YES
co = NO
P(Cy|vy, o) = P(Cslvy, va) =
— P(YES|C = w.T = n) = P(NO|C =w,T =n)
— P(YES) - P(C = w|YES) - P(T = n|YES) = P(NO) - P(C = w|NO) - P(T = n|NO)
111 _tty
233 23
1 1
D 6



Exercise: Naive Bayes Classifier

Does the spider catch the big black ant at daytime?

T
‘olor | Size | Time || Caught P(c;| aj=vy, ay=v,,...,a=v,) « P(c;) X H P(a; = vj | class = ¢;)
black | large | day YES J=1

white | small | night YES

black | small | day YES

- Ant 2: Color = black, Size = large, Time = day
red large | night NO

vy = “Color = black™ = *C =V

black | large | night NO

vy = “Size = large” = *5=1"

white | large | night NO T — du — T —
r=YES
o = NO

P(Cilor, vz, v3) = P(Ca|v,v2,13) =

=£(:,E2|(;E;5iﬁ;.={;g [[YES) - P(T = d|YES =PINOIC =b,5=1T = d)

= P(YES) - P(C = b|YES) - P(S = I[[YES) - P(T' = d|YES) = P(NQ)- P(C = b|NQ) - P(S = [|NO) - P(T = d|NO)
1 21 2 _

~2'3'3°3 — 222

1 9 2 33



Probability Estimation




A decision tree of depth 5

How many examples are on average in each leaf at level 5?

= (L6B1453

=0.474886 —

i =0.280142 = 044415



Estimating probability

* |n machine learning we often estimate probabilities from small samples of data
and their subsets:

* In the 5t depth of a decision tree we have just about 1/32 of all training examples.

» Estimate the probability based on the amount of evidence and of the prior
probability
e Coin flip: prior probability 50% - 50%
* One coin flip does not make us believe that the probability of heads is 100%
* More evidence can make us suspect that the coin is biased



Estimating probability

Relative frequency
* P(c)=n(c) /N

* A disadvantage of using relative frequencies for
probability estimation arises with small sample
sizes, especially if the probabilities are either very
close to zero, or very close to one.

* In our spider example:
P(Time=day|caught=NO) =
=0/3=0

n(c) ... number of times an event occurred
N ... total number of events
k ... number of possible outcomes



Relative frequency vs. Laplace estimate

Relative frequency
* P(c)=n(c) /N

* A disadvantage of using relative frequencies for
probability estimation arises with small sample
sizes, especially if the probabilities are either very
close to zero, or very close to one.

* In our spider example:
P(Time=day|caught=NO) =
=0/3=0

n(c) ... number of times an event occurred
N ... total number of events
k ... number of possible outcomes

Laplace estimate

Assumes uniform prior distribution over the
probabilities for each possible event

P(c) =(n(c) +1) / (N + k)

In our spider example: P(Time=day|caught=NO) =
(0+1)/(3+2) = 1/5

With lots of evidence it approximates relative
frequency

If there were 300 cases when the spider didn’t
catch ants at night: P(Time=day|caught=NO) =
(0+1)/(300+2) = 1/302 = 0.003

With Laplace estimate probabilities can never be 0.



Laplace estimate (Additive smoothing)



Laplace estimate (Additive smoothing)

Laplace Laplace
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Exercise

» Estimate the probabilities of C1 and C2 in the table below by relative frequency
and Laplace estimate.

o P(C) - (n(c) + 1) / (N + k) n(c) ... number of times an event occurred

N ... total number of events
k ... number of possible outcomes

Number of events Relative frequency Laplace estimate

Class C1 = Class C2 P(C1) P(C2) P(C1) P(C2)
0 2
12 88
12 988

120 880



Exercise

» Estimate the probabilities of C1 and C2 in the table below by relative frequency
and Laplace estimate.

Number of events Relative frequency Laplace estimate

Class C1 | Class C2 P(C1) P(C2) P(C1) P(C2)
0 2 0 1 0.25 0.75
12 88 0.12 0.88 0.127451 0.872549
12 988 0.012 0.988 0.012974 0.987026

120 880 0.12 0.38 0.120758 0.879242



Predictive induction

Data mining techniques

Classification

Decision trees
Classification
rules

NENEREWES
classifier

M\

Numeric prediction

Linear
regression

Regression /
model trees

Descriptive induction

|
| |
Clustering

Association rules

20



Numeric prediction



Example

e data about 80 people: Age and

Height
27 PR 00,* R $ N ¢ o
'0’0 L0 4 L S
4 ’,’:0“ o ’0:%" ¢ 0
1.5 }O
£ é
3 1¢
T
0.5
* Height
0 ; .
0 50 100
Age

Age | Height
2 1.03
a 119
g 126
g 129
145 169
149 167
22 1286
is’ 185
41 1459
i 1 B0
! .90
N 182




Test set

Age Height
2 0.85
10 1.4
35 1.7
70 1.6




Baseline numeric predictor

* Average of the target variable

Height

Age

+ Height

60

= Average predictor |

80

100
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Baseline predictor: prediction
Average of the target variable is 1.63

Age Height |Baseline
2 0.85
10 1.4
35 1.7
70 1.6




Linear Regression Model

Height =

0.0056 * Age + 1.4181

|
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Linear Regression: prediction

Height = 0.0056 * Age + 1.4181

Linear
Age Height |[regression
2 0.85
10 1.4
35 1.7

70 1.6




Regression tree
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Regression tree: prediction

29

Regression

Age Height |[tree
2 0.85
10 1.4
35 1.7
70 1.6




Model tree

==125

/
M1 1715.516%)

Height =
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Model tree: prediction

2

==12.5 =12.59

Height = Height =
0.0333* Age 0.0011 * Age
+ 1.1366 +1.6692

31

Age Height |Model tree
2 0.85
10 1.4
35 1.7
70 1.6




KNN — K nearest neighbors

* Looks at K closest examples (by non-target attributes) and predicts the average of their
target variable

* In this example, K=3 2.00
1.80

1.60
1.40

20 L
1.00 ?

0.80

0.60 _
0.40 + Height

0.20 = Prediction KNN, n=3
OOO | I I I

0 20 40 60 80 100
Age

Height




KNN prediction

Age || Height

1 0.90 Age Height KININ
1 0.99 > 0.85

2 1.01

3 1.03 10 1.4

3 1.07 35 17

5 1.19

5 1.17 70 1.6




KNN prediction

Age || Height
8 |l 1. Age | Height kNN
8 1.33
9 1.45 2 0.85
9 1.39
11 || 1.49 10 1.4
12 || 1.66
12 || 1.52 33 1.7
13 || 1.59
14 || 1.58 70 1.6




KNN prediction

Age || Height

30 {157 Age | Height KNIN
30 || 1.88

31 || 1.71 2 0.85

34 || 155

37 || 1.65 10 1.4

37 || 1.80

38 || 1.60 395 1.7

39 || 1.69

39 || 1.80 70 1.6




KNN prediction

Age || Height

67 1.56 Age Height kNN
67 1.87

69 || 1.67 2 0.85

69 | 1.86 10 14

71 1.74

71 1.82 35 1.7

12 1.70

76 || 1.88 70 1.6




Which predictor is the best?

Age Height | Baseline Llnear Regressi| - Model KNN
regression| ontree tree

2 0.85 1.63 1.43 1.39 1.20 1.00

10 1.4 1.63 1.47 1.46 1.47 1.44

35 1.7 1.63 1.61 1.71 1.71 1.67

70 1.6 1.63 1.81 1.71 1.75 1.77




MAE: Mean absolute error

Divide by the total
number of data points

-
~

MAE = |1 ‘)I/—-)//\

Output

The average difference between the
predicted and the actual values.

The units are the same as the unites in the
1o target variable.

Inputs




MSE: Mean squared error

y ® L 1 PN 2
MSE = 13s(y -5
A n
. L ~ >4
. . . The square of the difference
between actual and
predicted
®
[&]
H ®
3 %
° = Mean squared error measures the average
© squared difference between the estimated
values and the actual value.
1o b 5 Weights large errors more heavily than

Inputs small ones.
The units of the errors are squared.



RMSE: Root mean square error

®
Y
4 . RMSE = VMSE
) ® ®
®
(&
5 ®
3 &
° 2 Taking the square root of MISE yields the
® root-mean-square error (RMSE), which has
the same units as the quantity being
|

estimated.

Inputs



Correlation coefficient

* Pearson correlation coefficient is a statistical formula that measures the strength
between variables and relationships.

0.2 0.4 0 -0.4 -0.8 -1

PRV A . Y\

Ve e — T . ™~
o o ] o o o o
Y-V W b W P R
S 4 P R S R

Similar to confusion matrix in the classification case.
No unit.



Numeric prediction in Orange

D Daa m
M O d e I S File Select Columns

Bleg

[

Data Table

Metrics

* MSE — mean squared error

* RMSE — root mean squared error
 MAE — mean absolute error

* R2—correlation coefficient

3)e

Constant

Tree ;}(\1

Linear Regression

Evaluation Results

Daa

Random Forest

Leaner
Lea“ =
o5
3
\9’(\ g’*
2
K7
: s
kNN SVM

Random Forest

Model MSE  RMSE
Constant 0.055 0.236
Linear Regression 0033 0.181
SyM 0032 0179
Meural Metwork 0.026 0.61
kMM 0.1 0,307
Tree 0.010 0.100
AdaBoost 0.004  0.066

0.003 0.057

MAE
0.175

0.142
0.128
0.118
0.086
0.073
0.057
0.043

-0.005

R2

0.405
0.423
0.533
0.794
0.817
0.922
0.940

Test and Score

)
%)
3

AdaBoost

Neural Network



Numeric prediction Classification

Data: attribute-value description

Target variable: Target variable:
Continuous Categorical (nominal)

Evaluation: cross validation, separate test set, ...

Error: Error:

MSE, MAE, RMSE, ... 1-accuracy

Algorithms: Algorithms:

Linear regression, regression trees,... Decision trees, Naive Bayes, ...
Baseline predictor: Baseline predictor:

Mean of the target variable Majority class




Performance measures for numeric prediction

Performance measure Formula

(pr—a) +...+(pn—a,)
n

mean-sq uared error

(pr—a&) +...+(pr—a,)
n

Iy —al+...+|p, —a,l

n

(=) + .. +(py =) wherea_—lza-

(@—-2a)+..+(@—-a) e

\/(p1—a,)2+...+(pn—an)2
(@—-a3)+..+(@—a)

|py—ail+...+|p, —ayl

lay—al+...+|a, —a|

root mean-squared error \/

mean absolute error

relative squared error

root relative squared error

relative absolute error

. .. S ,(pf'_ﬁ)(ar'_g)
correlation coefficient \z% , where Spy = Z' — ,
(p;—p) (@-a)
Sp = z‘p—p' and SA = 2’—
n-1 n-1

* p are predicted values and a are actual values.

. Witten, lan H., Eibe Frank, and Mark A. Hall. "Practical machine learning tools and techniques."

Morgan Kaufmann (2005): 578. pg. 178



Relative squared error

“The error is made relative to what it would have been if a simple
predictor had been used. The simple predictor in question is just the
average of the actual values from the training data. Thus relative
squared error takes the total squared error and normalizes it by
dividing by the total squared error of the default predictor.”

Witten, lan H., Eibe Frank, and Mark A. Hall. "Practical machine learning tools and techniques.” Morgan Kaufmann (2005): 578. pg. 177



Exercise: RRSE

* Use SciKit (or Orange) to compute RRSE of regression models

* RRSE = root relative squared error
* Nominator: sum of squared differences between the actual and the expected values

* Denominator: sum of squared errors (the sum of the squared differences between each
observation and its group's mean)

Z (J.UJ - ﬁr’ }J
RRSE = =l

-+

@ —a,)’
i=1

p — predicted, a — actual, a — the mean of the actual

* RRSE: Ratio between the error of the model and the error of the naive model (predicting the average)



Regression in scikit ... 4 regression.py

import pandas as pd

from sklearn import dummy

from sklearn import linear model

from sklearn import tree

from sklearn.neighbors import KNeighborsRegressor
from sklearn.model selection import train test split
from sklearn import metrics

print(" "y
print ("Regression models, train-test validation on regressionAgeHeight.csv. ")
print(" "y

print (""" Load the data """)

csvFileName = r"./Datasets/regressionAgeHeight.csv"
df = pd.read csv(csvFileName)

print (df.head())

print ("data shape: ", df.shape)

feature cols = ['Age']
target var = 'Height'

X = df[feature cols].values
y = df[target var].values

""" Train-test split """
X train, X test, y train, y test = train test split(X, y, test size=0.1, random state=42)



Regression in scikit ... 4 regression.py

mwiiw

""" TInitialize the learners
dummy = dummy.DummyRegressor ()

regr = linear model.LinearRegression ()

reg tree = tree.DecisionTreeRegressor (min_ samples leaf=8)
knn = KNeighborsRegressor (n_neighbors=2)

learner = reg tree

mwwwn Train and apply mwmwn
learner.fit (X train, y train)
y pred = learner.predict (X test)

print ("\n Actual Predicted")
for i in range(len(y test)):
print ("{0:6.2f} {1:8.2f}".format (y test[i], y pred[i]))

print ("Performance:")

print ("MAE \t{0:5.2f}".format( metrics.mean absolute error(y test,y pred)))
print ("MSE \t{0:5.2f}".format( metrics.mean squared error (y test,y pred)))
print ("R2 \t{0:5.2f}".format ( metrics.r2 score(y test,y pred)))
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