Data Mining and Knowledge Discovery

Petra Kralj Novak
December 18, 2019

http://kt.ijs.si/petra_kralj/dmkd3.html

So far

- Nov. 11. 2019
- Basic classification
- Orange hands on data visualization and classification
- Dec. 112019
- Fitting and overfitting
- Data leakage
- Decision boundary
- Evaluation methods
- Classification evaluation metrics: confusion matrix, TP, FP, TN, FN, accuracy, precision, recall, F1, ROC
- Imbalanced data and unequal misclassification costs
- Probabilistic classification
- Naïve Bayes classifier

Assignment 1: Home reading

Read: Friedman, J., Hastie, T., \& Tibshirani, R. (2001). The elements of statistical learning, Secondedition. New York: Springer series in statistics. https://web.stanford.edu/~hastie/Papers/ESLII.pdfPages 9-18:
2.1 Introduction 9
2.2 Variable Types and Terminology 9
2.3 Two Simple Approaches to Prediction: Least Squares and Nearest Neighbors 11
2.3.1 Linear Models and Least Squares 11
2.3.2 Nearest-Neighbor Methods 14
2.3.3 From Least Squares to Nearest Neighbors 16

Assignment 2: Decision boundary

- What is a decision boundary like for KNN?
- K=1
- $\mathrm{K}=3$
- $K=10$

You can do it by hand, in Orange or in SciKit.

What is a decision boundary like for KNN

$K=3$

$K=10$

The large circles are the training set, the small ones are the test set - colored by the real labels. The background colors represent the decision boundary.
The source code for this is available at

Assignment 3: Confusion matrix

							dicted		
Titanic		icted		Car	unace	acc	good	v-good	Σ
				unace	1154	54	2	0	1210
		yes		acc	94	276	14	0	384
		126	1490	good	0	44	22	3	69
¢ yes	362	349	711	v-good	0	25	0	40	65
Σ	1726	475	2201	Σ	1248	399	38	43	1728
				Titanic			Car		
Number of examples									
Number of classes									
Number of examples in each class									
Number of examples classified in individual classes									
Number of misclassified examples									
Classification accuracy									

Assignment 4: F1

- Express F1 in terms of TP, FP, TN, FN

$$
F_{1}=2 \cdot \frac{\text { precision } \cdot \text { recall }}{\text { precision }+ \text { recall }}=\frac{2 \mathrm{TP}}{2 \mathrm{TP}+\mathrm{FP}+\mathrm{FN}}
$$

		Predicted class		Total instances
		+	-	
Actual class	+	TP	FN	P
	-	FP	TN	N

Exercise: Naïve Bayes Classifier

Color	Size	Time	Caught
black	large	day	YES
white	small	night	YES
black	small	day	YES
red	large	night	NO
black	large	night	NO
white	large	night	NO

$$
P\left(c_{i} \mid a_{l}=v_{l}, a_{2}=v_{2}, \ldots, a_{j}=v_{j}\right) \propto P\left(c_{i}\right) \times \prod_{j=1}^{n} P\left(a_{j}=v_{j} \mid \text { class }=c_{i}\right)
$$

- Does the spider catch a white ant during the night?
- Does the spider catch the big black ant at daytime?

Exercise: Naïve Bayes Classifier

Does the spider catch a white ant during the night?

Color	Size	Time	Caught
black	large	day	YES
white	small	night	YES
black	small	day	YES
red	large	night	NO
black	large	night	NO
white	large	night	NO

$$
\begin{gathered}
P\left(c_{i} \mid a_{1}=v_{1}, a_{2}=v_{2}, \ldots, a_{j}=v_{j}\right) \propto P\left(c_{i}\right) \times \prod_{j=1}^{n} P\left(a_{j}=v_{j} \mid \text { class }=c_{i}\right) \\
v_{1}=" \text { Color }=\text { white" } \\
v_{2}=" \text { Time }=\text { night" } \\
c_{1}=Y E S \\
c_{2}=N O
\end{gathered}
$$

```
P(C, 伩, v
    = P(YES }|=w,T=n
    =P(YES )}\cdotP(C=w|\textrm{YES})\cdotP(T=n|\textrm{YES}
    = }\frac{1}{2}\cdot\frac{1}{3}\cdot\frac{1}{3
    = 1
```

$$
\begin{aligned}
P\left(C_{2} \mid v_{1}, v_{2}\right) & = \\
& =P(\mathrm{NO} \mid C=w, T=n) \\
& =P(\mathrm{NO}) \cdot P(C=w \mid \mathrm{NO}) \cdot P(T=n \mid \mathrm{NO}) \\
& =\frac{1}{2} \cdot \frac{1}{3} \cdot 1 \\
& =\frac{1}{6}
\end{aligned}
$$

Exercise: Naïve Bayes Classifier

Does the spider catch the big black ant at daytime?

Color	Size	Time	Caught
black	large	day	YES
white	small	night	YES
black	small	day	YES
red	large	night	NO
black	large	night	NO
white	large	night	NO

$$
P\left(c_{i} \mid a_{1}=v_{l}, a_{2}=v_{2}, \ldots, a_{j}=v_{j}\right) \propto P\left(c_{i}\right) \times \prod_{j=1}^{n} P\left(a_{j}=v_{j} \mid \text { class }=c_{i}\right)
$$

Ant 2: Color $=$ black, Size $=$ large, Time $=$ day

$$
\begin{gathered}
v_{1}=" \text { Color }=\text { black } "=" C=b " \\
v_{2}=" \text { Size }=\text { large" }=" S=l " \\
v_{3}=" \text { Time }=\text { day" } "=" T=d " \\
c_{1}=Y E S \\
c_{2}=N O
\end{gathered}
$$

```
P(C1 伩, v2, v3)=
    =P(YES }|=b,S=l,T=d
    = P(YES ) P P(C=b|YES ) P P(S=l \ YES ) }\cdotP(T=d|\textrm{YES}
    = \frac{1}{2}}\cdot\frac{2}{3}\cdot\frac{1}{3}\cdot\frac{2}{3
    = 4
```

$P\left(C_{2} \mid v_{1}, v_{2}, v_{3}\right)=$

$$
\begin{aligned}
& =P(\mathrm{NO} \mid C=b, S=l, T=d) \\
& =P(\mathrm{NO}) \cdot P(C=b \mid \mathrm{NO}) \cdot P(S=l \mid \mathrm{NO}) \cdot P(T=d \mid \mathrm{NO}) \\
& =\frac{1}{2} \cdot \frac{1}{3} \cdot \frac{3}{3} \cdot 0 \\
& =0
\end{aligned}
$$

Probability Estimation

A decision tree of depth 5

How many examples are on average in each leaf at level 5 ?

Estimating probability

- In machine learning we often estimate probabilities from small samples of data and their subsets:
- In the $5^{\text {th }}$ depth of a decision tree we have just about $1 / 32$ of all training examples.
- Estimate the probability based on the amount of evidence and of the prior probability
- Coin flip: prior probability 50\%-50\%
- One coin flip does not make us believe that the probability of heads is 100%
- More evidence can make us suspect that the coin is biased

Estimating probability

Relative frequency

- $P(c)=n(c) / N$
- A disadvantage of using relative frequencies for probability estimation arises with small sample sizes, especially if the probabilities are either very close to zero, or very close to one.
- In our spider example:
$\mathrm{P}($ Time $=$ day \mid caught $=\mathrm{NO})=$

$$
=0 / 3=0
$$

$\mathrm{n}(\mathrm{c}) . .$. number of times an event occurred
N ... total number of events
k ... number of possible outcomes

Relative frequency vs. Laplace estimate

Relative frequency

- $P(c)=n(c) / N$
- A disadvantage of using relative frequencies for probability estimation arises with small sample sizes, especially if the probabilities are either very close to zero, or very close to one.
- In our spider example:

$$
\begin{aligned}
& \text { P(Time=day } \mid \text { caught=NO })= \\
& =0 / 3=0
\end{aligned}
$$

Laplace estimate

- Assumes uniform prior distribution over the probabilities for each possible event
- $\mathbf{P}(\mathbf{c})=(\mathbf{n}(\mathbf{c})+1) /(\mathbf{N}+\mathrm{k})$
- In our spider example: $\mathrm{P}($ Time=day \mid caught $=\mathrm{NO})=$ $(0+1) /(3+2)=1 / 5$
- With lots of evidence it approximates relative frequency
- If there were 300 cases when the spider didn't catch ants at night: $\mathrm{P}($ Time=day \mid caught=NO $)=$ $(0+1) /(300+2)=1 / 302=0.003$
- With Laplace estimate probabilities can never be 0 .
$\mathrm{n}(\mathrm{c}) . .$. number of times an event occurred
N ... total number of events
k ... number of possible outcomes

Laplace estimate (Additive smoothing)

Laplace

Laplace estimate (Additive smoothing)

Laplace

Laplace

Exercise

- Estimate the probabilities of C 1 and C 2 in the table below by relative frequency and Laplace estimate.
- $P(c)=(n(c)+1) /(N+k)$
$\mathrm{n}(\mathrm{c}) . .$. number of times an event occurred
$\mathrm{N} . .$. total number of events
k ... number of possible outcomes

Number of events		$P(C 1)$	$P(C 2)$	Laplace estimate	
Class C1	Class C2				
0	2				
12	88				
12	988				
120	880				

Exercise

- Estimate the probabilities of C 1 and C 2 in the table below by relative frequency and Laplace estimate.

Number of events		$P(C 1)$	$P(C 2)$	Laplace estimate	
Class C1	Class C2	0	1	0.25	$P(C 2)$
0	2	0.12	0.88	0.127451	0.75
12	88	0.012	0.988	0.012974	0.872549
12	988	0.12	0.88	0.120758	0.987026
120	880			0.879242	

Data mining techniques

Numeric prediction

Regression

Example

- data about 80 people: Age and Height

Age	Height
3	1.03
5	1.19
6	1.26
9	1.39
15	1.69
19	1.67
22	1.86
25	1.85
41	1.59
48	1.60
54	1.90
71	1.82
\ldots	\ldots

Test set

Age	Height
2	0.85
10	1.4
35	1.7
70	1.6

Baseline numeric predictor

- Average of the target variable

Baseline predictor: prediction

Average of the target variable is 1.63

Age	Height	Baseline
2	0.85	
10	1.4	
35	1.7	
70	1.6	

Linear Regression Model

Height $=0.0056$ * Age +1.4181

Linear Regression: prediction

$$
\text { Height }=0.0056 * \text { Age }+1.4181
$$

Age	Height	Linear regression
2	0.85	
10	1.4	
35	1.7	
70	1.6	

Regression tree

Regression tree: prediction

Age	Height	Regression tree
2	0.85	
10	1.4	
35	1.7	
70	1.6	

Model tree

Model tree: prediction

Age	Height	Model tree
2	0.85	
10	1.4	
35	1.7	
70	1.6	

KNN - K nearest neighbors

- Looks at K closest examples (by non-target attributes) and predicts the average of their target variable
- In this example, $\mathrm{K}=3$

KNN prediction

Age	Height
1	0.90
1	0.99
2	1.01
3	1.03
3	1.07
5	1.19
5	1.17

Age	Height	kNN
2	0.85	
10	1.4	
35	1.7	
70	1.6	

KNN prediction

Age	Height
8	1.36
8	1.33
9	1.45
9	1.39
11	1.49
12	1.66
12	1.52
13	1.59
14	1.58

Age	Height	kNN
2	0.85	
10	1.4	
35	1.7	
70	1.6	

KNN prediction

Age	Height
30	1.57
30	1.88
31	1.71
34	1.55
37	1.65
37	1.80
38	1.60
39	1.69
39	1.80

Age	Height	kNN
2	0.85	
10	1.4	
35	1.7	
70	1.6	

KNN prediction

Age	Height
67	1.56
67	1.87
69	1.67
69	1.86
71	1.74
71	1.82
72	1.70
76	1.88

Age	Height	kNN
2	0.85	
10	1.4	
35	1.7	
70	1.6	

Which predictor is the best?

Age	Height	Baseline	Linear regression	Regressi on tree	Model tree	kNN
2	0.85	1.63	1.43	1.39	1.20	1.00
10	1.4	1.63	1.47	1.46	1.47	1.44
35	1.7	1.63	1.61	1.71	1.71	1.67
70	1.6	1.63	1.81	1.71	1.75	1.77

MAE: Mean absolute error

The average difference between the predicted and the actual values.
The units are the same as the unites in the target variable.

MSE: Mean squared error

$$
\begin{aligned}
& \text { CNE } \\
& \text { Mean squared error measures the average } \\
& \text { squared difference between the estimated } \\
& \text { values and the actual value. } \\
& \text { Weights large errors more heavily than } \\
& \text { small ones. } \\
& \text { The units of the errors are squared. }
\end{aligned}
$$

RMSE: Root mean square error

$$
R M S E=\sqrt{M S E}
$$

Taking the square root of MSE yields the root-mean-square error (RMSE), which has the same units as the quantity being estimated.

Correlation coefficient

- Pearson correlation coefficient is a statistical formula that measures the strength between variables and relationships.

Similar to confusion matrix in the classification case.
No unit.

Numeric prediction in Orange

Models

Evaluation Results

Model	MSE	RMSE	MAE	R2
Constant	0.055	0.236	0.175	-0.005
Linear Regression	0.033	0.181	0.142	0.405
SVM	0.032	0.179	0.128	0.423
Neural Network	0.026	0.161	0.118	0.533
kNN	0.011	0.107	0.086	0.794
Tree	0.010	0.100	0.073	0.817
AdaBoost	0.004	0.066	0.057	0.922
Random Forest	0.003	0.057	0.048	0.940

Numeric prediction	Classification
Data: attribute-value description	
Target variable: Continuous	Target variable: Categorical (nominal)
Evaluation: cross validation, separate test set, ...	
Error: MSE, MAE, RMSE, ...	Error: 1 1-accuracy
Algorithms: Linear regression, regression trees,...	Algorithms: Decision trees, Naïve Bayes, ...
Baseline predictor: Mean of the target variable	Baseline predictor: Majority class

Performance measures for numeric prediction

Performance measure
Formula
mean-squared error
root mean-squared error
mean absolute error
relative squared error
root relative squared error
relative absolute error
correlation coefficient

$$
\begin{aligned}
& \frac{\left(p_{1}-a_{1}\right)^{2}+\ldots+\left(p_{n}-a_{n}\right)^{2}}{n} \\
& \sqrt{\frac{\left(p_{1}-a_{1}\right)^{2}+\ldots+\left(p_{n}-a_{n}\right)^{2}}{n}} \\
& \frac{\left|p_{1}-a_{1}\right|+\ldots+\left|p_{n}-a_{n}\right|}{n} \\
& \frac{\left(p_{1}-a_{1}\right)^{2}+\ldots+\left(p_{n}-a_{n}\right)^{2}}{\left(a_{1}-\bar{a}\right)^{2}+\ldots+\left(a_{n}-\bar{a}\right)^{2}}, \text { where } \bar{a}=\frac{1}{n} \sum_{i} a_{i} \\
& \sqrt{\frac{\left(p_{1}-a_{1}\right)^{2}+\ldots+\left(p_{n}-a_{n}\right)^{2}}{\left(a_{1}-\bar{a}\right)^{2}+\ldots+\left(a_{n}-\bar{a}\right)^{2}}} \\
& \frac{\left|p_{1}-a_{1}\right|+\ldots+\left|p_{n}-a_{n}\right|}{\left|a_{1}-\bar{a}\right|+\ldots+\left|a_{n}-\bar{a}\right|} \\
& \frac{S_{P A}}{\sqrt{S_{P} S_{A}}, w h e r e S_{P A}=\frac{\sum_{i}}{}\left(p_{i}-\bar{p}\right)\left(a_{i}-\bar{a}\right)} \\
& S_{p}=\frac{\sum_{i}\left(p_{i}-\bar{p}\right)^{2}}{n-1}, \text { and } S_{A}=\frac{\sum_{i}\left(a_{i}-\bar{a}\right)^{2}}{n-1}
\end{aligned}
$$

Witten, lan H., Eibe Frank, and Mark A. Hall. "Practical machine learning tools and techniques."
Morgan Kaufmann (2005): 578. pg. 178

Relative squared error

"The error is made relative to what it would have been if a simple predictor had been used. The simple predictor in question is just the average of the actual values from the training data. Thus relative squared error takes the total squared error and normalizes it by dividing by the total squared error of the default predictor."

Exercise: RRSE

- Use SciKit (or Orange) to compute RRSE of regression models
- RRSE = root relative squared error
- Nominator: sum of squared differences between the actual and the expected values
- Denominator: sum of squared errors (the sum of the squared differences between each observation and its group's mean)

$$
\text { RRSE }=\sqrt{\frac{\sum_{i=1}^{n}\left(p_{i}-a_{i}\right)^{2}}{\sum_{i=1}^{n}\left(\bar{a}-a_{i}\right)^{2}}}
$$

p - predicted, a - actual, $\overline{\mathrm{a}}$ - the mean of the actual

- RRSE: Ratio between the error of the model and the error of the naïve model (predicting the average)

Regression in scikit ... 4_regression.py

```
import pandas as pd
from sklearn import dummy
from sklearn import linear_model
from sklearn import tree
from sklearn.neighbors import KNeighborsRegressor
from sklearn.model_selection import train_test_split
from sklearn import metrics
print("
```

\qquad

``` ")
print("Regression models, train-test validation on regressionAgeHeight.csv. ")
print("
```

\qquad

``` ")
print(""" Load the data """)
csvFileName = r"./Datasets/regressionAgeHeight.csv"
df = pd.read_cSv(csvFileName)
print(df.head())
print("data shape: ", df.shape)
feature_cols = ['Age']
target_var = 'Height'
X = df[feature_cols].values
Y = df[target_var].values
""" Train-test split """
X_train, X_test, Y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
```


Regression in scikit ... 4_regression.py

```
""" Initialize the learners """
dummy = dummy.DummyRegressor()
regr = linear_model.LinearRegression()
reg_tree = tree.DecisionTreeRegressor(min samples leaf=8)
knn = KNeighborsRegressor(n_neighbors=2)
learner = reg_tree
"""" Train and apply """
learner.fit(X_train, y_train)
y_pred = learner.predict(X_test)
print ("\n Actual Predicted")
for i in range(len(y_test)):
    print("{0:6.2f} {1:8.2f}".format(y_test[i], y_pred[i]))
print("Performance:")
print("MAE \t{0:5.2£}".format( metrics.mean_absolute_error(y_test,y_pred)))
print("MSE \t{0:5.2f}".format( metrics.mean_squared_error(y_test,y_pred)))
print("R2 \t{0:5.2f}".format( metrics.r2_score(y_test,y_pred)))
```

